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Received: 18 January 2008 – Accepted: 20 February 2008 – Published: 16 April 2008

Correspondence to: L. Alfonso (lesterson@yahoo.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

7289

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/7289/2008/acpd-8-7289-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/7289/2008/acpd-8-7289-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 7289–7313, 2008

Monte Carlo
simulations of

two-component drop
growth

L. Alfonso et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

The evolution of two-dimensional drop distributions is simulated in this study using a
Monte Carlo method. The stochastic algorithm of Gillespie (1976) for chemical reac-
tions in the formulation proposed by Laurenzi et al. (2002) was used to simulate the
kinetic behavior of the drop population. Within this framework species are defined5

as droplets of specific size and aerosol composition. The performance of the algo-
rithm was checked by comparing the numerical with the analytical solutions found by
Lushnikov (1975). Very good agreement was observed between the Monte Carlo sim-
ulations and the analytical solution.

Simulation results are presented for bi-variate constant and hydrodynamic kernels.10

The algorithm can be easily extended to incorporate various properties of clouds such
as including several crystal habits, different types of soluble CCN, particle charging and
drop breakup.

1 Introduction

The understanding of aerosol-cloud interactions contains large uncertainties that must15

be reduced to accurately estimate the impact of aerosols on weather and climate.
One of the most problematic aspects of aerosol-cloud interactions is the collision-
coalescence process that is a mechanism that modifies the aerosol distribution, i.e. the
aerosol particles that are the nuclei for individual droplets are combined during the co-
alescence process in the same way as the mass of the individual water droplets are20

merged. After the evaporation of the drop formed by coalescence, the aerosol particle
that remains will have the mass of the original two nuclei.

The aerosol distribution becomes important as the cloud drops evaporate and the
solutes are recycled into aerosols that can serve as CCN: the larger the mass of a hy-
groscopic aerosol, the lower the supersaturation needed to form a cloud droplet. In the25

marine environment, the aerosol recycling process is believed to be the major mech-
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anism responsible for the bimodal shape of the aerosol size distributions (Flossmann,
1994; Feingold et al., 1996). The heterogeneous chemical reactions, which add non-
volatile solute to each cloud droplet, strongly depend on the salt content and pH of the
droplet (Alfonso and Raga, 2004). Since aerosols also have a significant influence on
cloud microphysics and cloud radiative properties, it is necessary to simulate aerosol5

processes realistically and with adequate accuracy.
In general, cloud models with detailed microphysics describe the aerosol and cloud

droplets with two separate one-dimensional size distributions. With this approach only
the average aerosol mass contained in cloud droplets of a particular size is predicted
by the model and is not possible to keep track of the spectral aerosol mass distribu-10

tion within the cloud droplets. For the deterministic case, the aerosol processing due
to collision-coalescence was addressed by Liu (1998) and Bott (2000) by extending
the flux method to two-dimensional distributions. Within this framework each particle is
characterized both by the mass of its dry aerosol nucleus and by its water mass. Never-
theless, an extension of the exact stochastic framework developed by Gillespie (1976)15

for a two parameter droplet spectrum has never been reported in the cloud physics
literature.

The main advantage of the stochastic approach, described in this paper, over deter-
ministic methods is that it can be easily extended to include not only the solute mass,
but other particle properties such as crystal habit, different populations of CCN, chem-20

ical composition and the breakup of droplets (Alfonso et al., 2006).
Here we apply the general multi-component algorithm described by Laurenzi et

al. (2002) to the solution of the kinetic collection equation (KCE) in cloud models deal-
ing with two-dimensional microphysics.

The discrete two-component KCE, which is an extension of the discrete one dimen-25

sional kinetic collection equation, is given as:

∂N(m,n;t)
∂t = 1

2

m∑
m′=0

n∑
n′=0

K (m −m′, n − n′;m′, n′; t)N(m −m′, n − n′; t)N(m′, n′, t)
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−N(m,n; t)
∞∑

m′=0

∞∑
n′=0

K (m,n;m′, n′)N(m′, n′; t)
(1)

Where N(m,n; t) is the average number of species with water mass from size bin m
and aerosol mass from size bin n. The water mass in size bin m equals the volume
of a droplet in the smallest (monomer droplet) bin multiplied by m, the aerosol mass
in size bin n equals the volume of an aerosol in the smallest bin (monomer aerosol)5

multiplied by n. In general, N(m,n; t) is the average number of particles consisting of m
monomers of the first and n of the second kind, respectively. The integral (continuous)
version of this equation is more familiar:

∂N(n,m;t)
∂t = 1

2

m∫
0
dm1

n∫
0
dn1K (m −m1, n − n1;m1, n1)N(m −m1, n − n1; t)N(m1, n1; t)

− N(m,n; t)

∞∫
0

dm1

∞∫
0

dn1K (m,n;m1, n1)N(m1, n1; t) (2)10

In Eqs. (1) and (2) K (m,n;m1, n1) is the collection kernel, now dependent on the
composition of coagulating particles. The discrete KCE Eq. (1) gives the time rate of
change of the average number of species with water mass from bin m and aerosols
from bin n as the difference of two terms, the first term describes the average rate of
production of the (m,n) species due to coalescence between pairs of particles whose15

water mass volume is in size bin m, and the aerosol volume is in size bin n and the
second term describes the average rate of depletion of (m,n) particles due to their co-
alescence with particles from other species. To solve Eqs. (1) and (2) initial conditions
are needed:

N(m,n; 0) = N0(m,n) (3)20
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For the discrete case, we also put N(0,0; t)=0 for every t. The numerical solution of
the KCE Eqs. (1) and (2) is difficult due to the double integral and nonlinear behavior of
the equation and several numerical techniques can be found in the literature. In cloud
physics modeling, Eq. (2) was numerically integrated by the flux method developed by
Bott (2000) and independently by Liu (1998), both assuming that the probability for the5

collision of two cloud droplets depends only on the water mass of each one and not on
the mass of the aerosol nuclei.

Other methods are computationally more expensive, such as the previously men-
tioned Monte Carlo (MC) algorithm developed by Laurenzi et al. (2002). This method
has the advantage that it can be employed to determine both the expectations and10

fluctuations for multi-component aggregation. On the other hand, the KCE may not be
valid at longer time periods, when a single drop acquires a mass much larger than the
rest of the population and becomes separated from the continuous mass spectrum. In
such a situation, the statistical fluctuations at the high-mass end of the spectrum must
be taken into account. The Monte Carlo method is also very useful while investigating15

the role of coalescence in redistributing the aerosol mass in early warm rain stages
when the artificial broadening of the drop distribution must be avoided.

2 The stochastic algorithm

A detailed description of the stochastic algorithm for multi-component aggregation of
particles can be found in Gillespie (1976) and Laurenzi et al. (2002), and we briefly20

summarize it here. Consider a well-mixed and spatially homogeneous volume V in
which particles belonging to Ns distinct species are present. Each species is charac-
terized both by its water mass and by the mass of its dry aerosol nucleus, ūµ = (um, un),
such that, a droplet with composition ūµ is a member of the µth species. After time t=0
the species will randomly coalesce according to:25

Am,n + Bm′,n′ = Cm+m′,n+n′ (4)
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where Am,n and Bm′,n′ are droplets with compositions ūµ= (um, un) and ūν= (um′ , un′),
respectively. The transition probabilities for coalescence events follow Laurenzi et
al. (2002) and are given by:

a(i , j ) = V −1K (i , j )ninjdt≡Pr {Probability that two particlesof species i and j

(for i 6=j ) with populations (number of particles)ni andnj will collide5

within the inminent time interval} (5)

a(i , i ) = V −1K (i , i )
ni (ni − 1)

2
dt≡Pr {Probability that two particles of the same species

i with population (number of particles)ni collide within the inminent time interval} (6)

In Eqs. (5) and (6), K (i , j ) is the collection kernel, and V is the cloud volume. Within
this framework, there is a unique index µ for each pair of droplets i , j that may collide.10

For a system with N species
(
S1, S2, ... , SN

)
ν ∈ N(N+1)

2 . The set {ν} defines the total
collision space, and is equal to the total number of possible interactions. The transition
probabilities Eqs. (5) and (6) are then represented by one index (aν).

This stochastic model is solved using the algorithm introduced by Gillespie (1976)
for chemical kinetics and modified by Laurenzi et al. (2002). The expected behavior15

of the system can be evaluated by averaging over many realizations of the stochastic
process, described by the following steps:
1) At t=0, the event counter is set to zero and the initial number of species
n1, n2,. . . ,nN . is defined
2)The quantity α is calculated as:20

α =

N(N+1)
2∑

ν=1

aν (7)
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Generate a random number r1 from a uniform distribution in the interval (0,1) and
considering that 1-r1=r

∗
1 is also a uniformly distributed random number calculate

τ =
1
α

ln

(
1
r∗1

)
(8)

3) Generate a random number r2 from a uniform distribution in the interval (0,1).
Choose a collision (“chemical reaction”) with index µ from the inequality5

µ−1∑
ν=1

aν < r2α ≤
µ∑

ν=1

aν (9)

4) Let t=t+τ
5) Change the number of species to reflect the execution of collision.

3 Model results10

3.1 Comparison of the Monte Carlo algorithm with analytical solutions

In order to check the performance of the Monte Carlo algorithm, a simulation with a
constant kernel was performed and compared with the analytical solution found by
Lushnikov (1975). Solutions to Eqs. (1) and (2) can be obtained for an important class
of collection kernels, such as when the kernel depends only on the total number of15

monomers (droplets and aerosols) in each colliding particle. In this case:

K (m,n;m1, n1) = K (m + n;m1 + n1) (10)

Lushnikov constructed an explicit form for the composition distribution for this type of
kernel, which corresponds to coagulation of initially monomeric particles. In this case
N(1,0; 0)=c1 and N(0,1; 0)=c2, corresponding to the situation with initially c1 droplets20

and c2 aerosols. The composition distribution may be expressed as (Lushnikov, 1975):

N(m,n; t) =
(
m + n

n

)(
c1

c0

)m (c2

c0

)n
N(m + n, t) c0 = c1 + c2 (11)
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Where
(
m + n

n

)
are the binomial coefficients, and N(m+n, t) is the number of particles

composed of (m + n) monomers (m monomer droplets and n monomer aerosols).
Lushnikov (1975) showed that N(m+ n, t), for the type of kernels Eq. (10) is a solution
of the one dimensional kinetic collection equation:

∂N(i , t)
∂t

=
1
2

i−1∑
j=1

K (i − j, j )N(i − j )N(j ) − N(i )
∞∑
j=1

K (i , j )N(j ) (12)5

In this case, N(i , t)=
∑

m+n=iN(m,n; t). The initial condition for Eq. (12) is
N(i , t)=N0δi ,1. Analytical solutions of the continuous KCE have been obtained by
Golovin (1963), Scott (1968), Drake (1972) and Drake and Wright (1972) for approxi-
mations of the hydrodynamic kernel given by the polynomials K (i , j )=A,B(xi + xj ) and
C(xixj ) where xi and xjare the masses of the droplets from bins i and j . For the con-10

stant kernel K (i , j )=A and a monodisperse initial distribution with concentration c0, the
analytical size distribution of the discrete KCE has the form:

N(i , t) = 4c0
(T )i−1

(T + 2)i+1
with T = Ac0t (13)

Then, the analytical solution of Eq. (1), calculated according to the expression Eq. (11)
for the constant kernel K (xi , xj )=A, is compared with true stochastic averages over Nr15

realizations of the stochastic process (in our simulations Nr=1000):

〈N(m,n; t)〉 = 1
Nr

Nr∑
r=1

N(m,n; t)r (14)

where N(m,n; t)r is the number of particles for species with droplet mass from bin num-
ber m and dry aerosol mass from bin n in the r−realization of the stochastic algorithm
at time t.20
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The Monte Carlo simulation was conducted for initially monomeric particles (droplets
and aerosols) with concentrations c1=30 and c2=30 (N(1,0; 0)=30 and N(0,1; 0)=30).
Long (1974) calculated the coefficients for the polynomials K (x, y)=A, B(x+y) and
C(xy) approximating the one dimensional collection kernel when the largest of the
colliding drops is smaller than 50µm. For the constant kernel, he found a value5

of A=1.20×10−4 (cm3 s−1). We used the same value for the constant discrete two-
dimensional collection kernel:

K (m,n;m′, n′) = 1.2 × 10−4(cm3 s−1) (15)

In our simulations, the monomer droplet is 10µm in radius (droplet mass
4.188×10−9g) and the monomer aerosol is an ammonium sulfate aerosol, 0.1µm10

in radius (aerosol mass 1.14×10−14g). The aerosol-water mass grid was cho-
sen according to Droplet mass(i )=i × m0 (i=1, .., Ndroplets) and Aerosol mass(j)=j ×
n0 (j=1, .., Naerosols). Here m0 and n0 are the masses of the monomer droplet
(4.188×10−9g) and the monomer aerosol (1.14×10−14g) respectively.

We have defined 30 bins for the water mass grid and 30 bins for the aerosol grid.15

The pure monomeric species are also considered (those containing pure droplets and
pure aerosols). Then, the total number of species in our numerical experimental can
be calculated as:

NTotal = Ndroplets × Naerosols + Ndroplets + Naerosols (16)

Where Ndroplets and Naerosols are the number of bins for the water mass grid and the20

aerosol grid respectively. The last two terms in Eq. (16) account for the monomeric
species (droplets and aerosols). In our case the total number of species is 960.

The solutions obtained from the Monte Carlo calculations (averaged over 1000 re-
alizations) for the species N(1,1;t), N(0,1;t) and N(0,1;t) are shown in Fig. 1. The
analytical solution are also shown in Fig. 1 (represented by the solid curve), and indi-25

cates the good agreement between these solutions of the KCE (Eq. 1).
The two dimensional discrete size distributions for a) the analytical solution given by

Eq. (11) and b) the average over 1000 realizations after 100 s are displayed in Figs. 2
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and 3. The same comparison is shown after 200 (Figs. 4 and 5) and 400 s in (Figs. 6
and 7), respectively. Note that the differences between the Monte Carlo averages and
the analytical solution of the KCE are again negligible.

The one-dimensional distribution, which is a solution of the one-dimensional kinetic
collection Eq. (12), can be obtained from the two-dimensional spectrum by integrating5

over the aerosol grid for any point in time, as:

N(m, t) =
Naerosols∑
n=1

N(m,n; t), m = 1, ..., Ndroplets (17)

In Eq. (17) Naerosols, and Ndroplets are the number of bins (grid points) in the aerosol
and water grid, respectively. Two other simulations were performed with different ini-
tial conditions: N(1,1; 0)=100 and N(1,2; 0)=150, corresponding initially to 100 and10

150 particles per cubic centimeter from species (1,1) and (1,2), respectively. From
Eq. (17), a monodisperse initial condition for the one-dimensional KCE can be obtained
from the two-dimensional initial condition as:

N(1; 0) = N(1,1; 0) + N(1,2; 0) = 250 (18)

For this particular case (constant kernel and monodisperse initial conditions) we15

can use the analytical solution Eq. (13) of the KCE in order to compare with the
two-component Monte Carlo. The drop size distributions calculated from the Monte
Carlo, which is obtained by integrating the particle distribution over the aerosol grid
according to Eq. (17), and the analytical solution of the KCE with constant kernel
(A=1.20×10−4 cm3 s−1) from a monodisperse initial condition N0Eq. (1)=250 cm−3 are20

displayed in Figs. 8 and 9. Again, a good agreement between the two approaches is
found.

As was remarked in detail by Laurenzi et al. (2002), the species accounting for-
malism outlined in Sect. 2 reduces both computer storage and simulation time. This
process is handled by dynamic allocation of memory permitting calculations with thou-25

sands of droplets in the initial distribution.
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3.2 Simulations with realistic initial distributions and hydrodynamic kernel

Simulations with the two-dimensional Monte Carlo were performed with realistic initial
particle distributions and with the two-dimensional hydrodynamic kernel which is rele-
vant to cloud physics. The two-dimensional extension of the piecewise approximation
found by Long (1974) was used:5

K (i , j ) = 9.44 × 109
(
xspecies(i )2 + xspecies(j )2

)
ifR ≤ 50µm (19)

or by

K (i , j ) = 5.78 × 103 (xspecies(i ) + xspecies(j )
)

ifR > 50µm (20)

In Eqs. (19) and (20) R is the species radius and xspecies(i ) is the mass of the particle
from species with index i which is calculated as:10

xspecies(i ) = xd (i ) + xa(i ) (21)

where xd (i ) and xa(i ) are the droplet and the aerosol mass respectively.
Figure 10 shows the initial two-component spectrum for our simulation. The spec-

trum has a droplet concentration of 158 cm−3. This distribution was obtained (following
Liu, 1998) by assuming a gamma distribution function for the drop coordinate and an15

exponential distribution for the aerosol size coordinate. The Figs. 11 and 12 display
the drop and aerosol distributions, averaged over 1000 realizations, for two durations
(t=150 s, t=1500 s). There is a net loss for small particles and net gain for large par-
ticles. The spectrum shifts toward particles with large drop sizes and large aerosol
sizes.20

4 Discussion and conclusions

The multi-component MC algorithm proposed by Laurenzi et al. (2002) and based upon
Gillespie’s (1976) stochastic approach to chemical reactions was implemented to sim-
ulate two-component droplet growth by stochastic coalescence. Within this framework,
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all assumptions included in the stochastic collection equation are avoided. Additionally
it permits calculation of statistical fluctuations for two-component droplet aggregation.
On the other hand, the continuous KCE may not be valid when a single drop acquires a
mass much larger than the rest of the system and becomes separated from the smooth
mass spectrum. In such a situation, the statistical fluctuations at the high-mass end of5

the spectrum must be taken into account.
For the two-dimensional case each species is characterized both by its water mass

and by the mass of its dry aerosol nucleus. Very good agreement was observed be-
tween analytical solutions of the KCE and MC simulations.

Moreover, the above described algorithm can be easily extended to the multi-10

component case in order to include various other properties of clouds as well as
the breakup of droplets (Alfonso et al., 2006). In a more general case species can
be defined as types of particles with several attributes (droplet radius, CCN com-
position, chemical composition, electric charge, etc.). For this case, the state of a
k component system is defined by a set of drops with properties or compositions15

ūi =
(
u1,i , u2,i , u3,i , ..., uk,i

)
where uk,i denotes the amount of the component or the

property k in species i . For example, for the ice phase, it may represent the crystal
habit, or the ice crystal mass. Then, the transition probability (5) may be defined as
the probability that a specific pair of particles (drops, ice crystals, aerosols) with set of
properties ūi =

(
u1,i , u2,i , u3,i , ..., uk,i

)
and ūj =

(
u1,j , u2,j , u3,j , ..., uk,j

)
will aggregate20

in the next time interval.
The stochastic approach should make more feasible the modeling of highly com-

plicated microphysical processes and offers a method to evaluate these processes in
much greater detail than has been previously possible.
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Fig. 1. Simulated time evolution of species (a) N(1,0), (b) N(0,1) and (c) N(1,1) for a system
modeled by the constant kernel, as a function of time. The solid lines are the analytical solutions
of the two-dimensional KCE.
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Fig. 2. Discrete two dimensional droplet distributions N(m,n) resulting from the analytical
solution of the two-dimensional KCE with a constant kernel at t=100 s, with monomeric initial
conditions: (N(1,0; 0)=30 and N(0,1; 0)=30).
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Fig. 3. Discrete two dimensional droplet distributions N(m,n) resulting from the numerical
solution of the two-dimensional KCE with a constant kernel at t=100 s. Monte Carlo simulations
were conducted with initial conditions N(1,0; 0)=30 and N(0,1; 0)=30.
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Fig. 4. Discrete two dimensional droplet distributions N(m,n) resulting from the analytical
solution of the two-dimensional KCE with a constant kernel at t=200 s, with monomeric initial
conditions (N(1,0; 0)=30 and N(0,1; 0)=30).
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Fig. 5. Discrete two dimensional droplet distributions N(m,n) resulting from the numerical
solution of the two-dimensional KCE with a constant kernel at t=200 s. Monte Carlo simulations
were conducted with initial conditions (N(1,0; 0)=30 and N(0,1; 0)=30).
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Fig. 6. Discrete two dimensional droplet distributions N(m,n) resulting from the analytical
solution of the two-dimensional KCE with a constant kernel at t=400 s, with monomeric initial
conditions (N(1,0; 0)=30 and N(0,1; 0)=30).
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 Fig. 7. Discrete two dimensional droplet distributions N(m,n) resulting from the numerical
solution of the two-dimensional KCE with a constant kernel at t=400 s. Monte Carlo simulations
were performed with initial conditions N(1,0; 0)=30 and N(0,1; 0)=30.
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Fig. 8. The number of particles averaged over 1000 realizations and normalized to initial num-
ber of particles (N0=250) represented by the line with crosses) and the analytical solution of
the one dimensional kinetic collection equation (KCE) (represented by the dark solid line) as a
function of size for t=50.
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Fig. 9. Same as Fig. 8 , but for t=200.
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Fig. 10. Initial two-component spectrum N(m,n,0) with droplet concentration of 181 cm−3 and
LWC 1.87 g/kg.
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Fig. 11. Liquid water content (LWC, in g/kg) as a function of drop radius for the hydrodynamic
coalescence kernel for t=150 s (dashed line) and t=1500 s (solid line with diamonds).
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Fig. 12. Aerosol mass concentration (in g/cm3) as a function of aerosol radius for the hydrody-
namic kernel for t=150 s (dashed line) and t=1500 s (solid line with diamonds).
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